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STRESS ANALYSIS BY THE OPTICAL METHOD

V. L. Ginsburg . S o . . . I

- | N 22 (’20

The a.rtid.e dlscusses “the use of a:rtiﬁ.cial anisotrcpy
produced by stresses in an ts’otropic bodé 'B;e influence A
of direction and change of direction and interrelationships

of waves are discussed. The solution of light diffusion - B }f N

e

problems is cxplained in detail; as vell as diffusion-con-
nected cha.ngés and problems of axis rotation. = -~ = - {\ :

Ya e
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The optica.l aspect of the lnvestiétion of stresses by the photoela.stic

4 method and, first of all, by the diffuse light wethod 13 ~under. consideration.

The optical method of investigating stresses, as 1s W, is ba.sed on the .

use of the a.rtifi.d.al anisotrOpy produced by the stresses occwrring in an origi- -
nally isotropic body. Io this case, the ma.in axes of the stress ellipsoid “and
the dielectric constant ellipsoid in the materials ordina.rily used 1n connection

with the mentioned stresses coincide, and
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- where ey, ¥ 484"z are the main values of the dielectric constant tensor.- In -

actual practice, however, it is alvays

(3)
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and consequently, expressions (1) and (2) are equiva.lent.

Knowing the values of the Cl and C, constants in (1), measuring nx -1,
and determining the direc":lon ‘of the main axes of the optical symmetry, it is
possible to f‘ind cxi and the direction of the main stresses. The object. of the
stress mvestigation, therefore, is to find Oyy and the direction of the x;
axes. If the nxi- n, differences do not depend on coordinates, the problem can
be easily solved by the methods known from crystal optics.

'What we gre interested in, however,‘ are only trhierpréblrems in which 1:1xi
changes “rom point to point. Fir.ding By, and the x; axes in a general non--
homogenous medium is extremely difﬁcult and the success of the practical use
of the photoelastic methods has so far been limited to simple special cases of
the overall problem. The basic special case under exclusive investigation has
until now been the two-dimensional problem. One of the main stresses here,
such as °x for example, has a constant magnitude throughout the body; the direc- [182

tion of the corresponding main axis is also invariable, a.nd the directions of
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tne y and z axes are iadependent of x, as are the o;a:nd c; ,:.ﬂﬁ:ghitudégl;’f‘litﬁgﬁ_ﬁ;
reduction of the overall examination, it may be assumed thatl o# =0 ,and j_’.herg-_

fore;a;greéd that -«

5;;,-'-‘_';;;;;5‘c;_;,ag’d,:,;}'§ [ T T L
= Gt G, ) ' ‘

If the slight spreads along the x axis (that is, perpendicularly tothe L
plate under load in"its piane)— oy and n,,a8 well as the di;-é;:ﬁioﬁs of the main- .
y and z axis,can be found in exactly the same wgy as in the case of a homogen:bus,
medium; this is the usual investigation procedure. Even if ‘11'.‘15 assumed that
equation (L) and condition oy = O are carefully obéez;ved in the case of the
plate under inv_e_g_tigation, one of the above-made assumptions is automatically ,
approximate in nature. It is precisely to the exteni; that %,, Z,depend oz y .
and z that the light normally falling on the plate (tbat is, a.}.ong t};e x a'.xi‘s)v i
does not spread in it in the same direction. The surface Qf the vave front in
the plate is not plane, and the light rays are not parallel to'the x axis be-
cause of the optical nonhomogeneity of the medium. The fact that the medium 1sr
anisotropic is, as is evident, not esseuntial for an estimation of the magnitude
of the appropriate correction. We will therefore discuss the passage of light ‘
_through a plate of isotropic material whose refraction index n depends on co-

ordinate y (fig. 1).

lstriptly speaking, a problem is also considered two-dimensional when ax-—O and
is ché.raéterized by a changing magnitude; what is important is that Oy Oy and
10, and the directions of the x, y and z axes remain invariable in some direc-
tion common to.the entire body. This case, however, is considerably more cozrn-‘

plicated than the one under considefat_ion.
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Inasmuch as the refraction index is”knoia‘n to change very slowly at dis-
tances equalling a light wave lengtb, the diffusion of light can be weli de-
scribed by an approximation of geometrical optics. The trajectory of the ray )

shown in fig. 1 can in this case be expressed as followsl:

(5)

It may further be assumed that

i

VinG),
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as n(y) = ny + An(y), where An(y) <n§.

“]:In,,\r.lew of the fact the question now under consideration is of no particalar o

_interest, we will not go into further details.
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" Assuming for illustration purposes that n(y) oy, vhere a is a constant,,

we have:

If C= C - Cx230 vrewsters, the stresses change at distances. of ylém pef 100

xg/cn? = 108 dyne/cn® and An = x y, then X ¥ 5 ° 1073 and y ¥ 2 * 10"32, s, |

if the plate thickness is x5 = 1 cm, the displacement of the "point of the ray'é

emergence" amounts to y, = & ° 10™3 cm.,
o

Further, in our example ny -, = C(o -g,) =5 =107 3, (ny n,)y, = 10"5‘,

and the change in the delay is ) . B

B .

that is, relatively fairly large. The above-cited example is apparently indica~
tive of the fact that the distortion of the light ray in the plate is actually
not very substantial except for the regions with a large stress gradient.

The possibility of such an effect should be taken into consideration in t‘ner
cage of large stress gradients and when vorking with materia.ls characterized by |
a high C value. If the distortion and the related change in the expression for
the difference betveen the lines of two rays, which are inevita.bly further com-
plicated by a double ray refraction, are appreciable, the advantages provided by A
the two-dimensional nature of the problem become irrelevant and a simple defini-
tion of the stresses impossible. - B

A fairly simple vay of using photoelastic methods to investigate tension o
by observing the 1ight diffused in the model to be tested (ref. 2) has recently

been suggested, We will discuss the problems connected with that method in

somewhat greater detail. ; N

-
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Generally the diffus.ton of light 1n a nonhomogeneous anisotrop:lc medium

:reveals a very complicated picture, as the vave surfaces are not plane (because ,'

f.,the nonhomogeneity of the medium) an. the‘ turections of the rays and the '_ . 3

normals to the tvo types of vaves capable of propagation 1n an a.nisotropic medim
"-do not coincide. Finding the tra,jectory of the re.ys a.nd the polarization of

both wa.ves vith a known nxi (x,y,z) relationship, much less solving an inverse

pmblem, ;ls Jracticmy 1mpossib1e as 1t requires the solution of fairly complex
differential equations (ref. 3) I
In the case of an induced anisottopy, hovever, the cha.nge of the refraction
index from point to point as well as the differences between the main refrac-
tion mdexes is very small {fn= X" nx— < 10” 2) Tnat is why,the ray distor- .
tion is, generally speaking, not very la.rge in a three- dimensiona.l case elither.
‘ . ;Flu—thermore, the angle 'betveen the normal to the wave front and the direction of
.'."'the ray 13 on “the order of Sn/no and less ‘than 1072 = 0. 5° “that 13, also very
emall. It is therefore possible to asen;e in at least a la.rge number of cases
tha.t the light rays are rectilinea.r, and tha.t the double refraction of the rays
r : _in relation to their direction is of minor signiﬁcance. In a three-d;mensional
»:’pro'blem, Oxs Oy and o, and the direc¢tions of the main x, ¥y and z axes cha.nge
along the length of the ray (vhich we do not distinguish from the normal to the
vrraw.re)r Let the direction of the ray coincide with the x axis, for example; vt—he
' induction vectors D of both independent waves capable of propagating along the
ux axis vill then te directed slong the y and z axes. The tension vectors of
-—; the electric field E of both waves will in this case coincide in‘ the same direc- ___
tion with the D vectors. If the direction of the ray (norma.l) does not coincide
with one of the main axes, the D and E vectors are not parallel, but the perpen-

dicular B projection of E is approximately 6n/n times sm]ler than the parallel
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gprojection. We ca.nnot therefore continue to identify the D and E directions,;
as in the case of the normal and the ray. The resulting osci]lations E El 132 :
where El and l‘.‘.2 are normal oscillations , that is, oscillations correspon.ding to
a definite propagation velocity, are ellipticel.— The c.ha.ngina phase differenc‘-
between E]. and E2 accounts for the changing ellipticity along tne ray.. g '
Obviously, if it is possible to determine the change of the phase differ-':ce ,j :
ence between both oscillations along the rays of various directions in the
neighborhood S d glven Toint, it 1s thereby also possible to find nx, ny and x:lz
ané the directions of the main x, y and z axes. If the ray is directed ‘along ‘
the x axis and we use an epproximation of geometrical optics (se‘eAbelow) , the -
mentioned pha.se difference along the rey will cnange at distance x by the fol-

lowing wmagnitude N o

(6)

vwhere the mean values on section x should be used for ny, n,, ay and oz, e.sv,

for example,

T PR TR SR

Inasmuch as we want to f£ind the magnitude of the tensions at the point, it '

T a1 u> )

is clear that the x segment must be small, for otherwise it would be impossible .
to change from average values to the values at the polnt; it"is the use of
light diffusion that ma.kes it possible to determine A with a low x value. '.lize
nonhomogeneities of the refraction index in a body associated with the density
and concentration fluctuation, as well as with dust and various unevenly dis-

tributed impurities, result in the diffusion of the light passing through the P
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f'body, 1t is precisely because of the diffusion that the path of the ray in the

,body becomes visible. If the nonbomogeneities are considerably smller than +‘1e'

light wave - and are roughly spherica.l in shape ) the d.ifmsion of light on them isr.
similar to the diffusion on an isotropic oscillator - the vlbrations of such an
oscillator, resulting in the appearance of -the diffused light, coincide with the
= direotion of the.tension vector of the electric field at a given point il. If a
- parbiole (non:nomogeneity) has an elongated shape, it diffuses like an anisotropic
Nwloscill;bor,i in this case, the direction of the oscillations does not coincide
7}.' - with E. Finally, in the cise of nonhomogeneities comparable in size to the wave-
- length, that is, with a larger diameter tnan 5 . 10 -6 cm, the nature of the
)diffusion no longer coincides with that on an cscillator but is considerably

_._more complex. . . . . o T

- - To avoid additional complications , an attempt should be mede to experiment
with the first case. in which the scattering particles are fairly small and
approximat-ly spherica.l. The diffusion intensity, while the medium is still
mszicientlybtra.neparent, is proportional to the mumber of nonhomogeneities
(particles).‘ In addition to the usual requirements (ref. 1), the photoelastic

. materials used in the diffusion method must also satisfy the requirenents clearly

7 1mp1ied above; the implementation of such requirements (and, first of all, the

increas;e in the number of scattering centers) car make the work a great deal @
easier.

’ Let us assume {fthat the diffusion occurs on isotropic oscilla;bors ; the object

-——- then is.to tske advnntage of the situation and determine, by observing the dif- o

fusion, the direction of the E vector or, generally speaking, the nature of the

oscillations at a given point (the E field may be elliptically polarized). This

i

| .
““Problem can be easily solved if the scattering oscillator is in an isotropic .
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medium. We will m-ke the observation in a plane pe}—i;andicular to thf primry—‘, S

incident 1ight rey which contains sn E vector, If the light at a given ﬁoint 13
1ipearly polarized (tbat is, the E T atrection 1s invarisble), it vill not be, aif-
fused in the E dirﬂction, a.nd this vill make it possihb to determ:!.ne this d:lrec-

tion at once. If the observation 1s made at 8 a.ngle vo E the intensity of the

light will be proportional to 81:29. In the case of an e]_liptica:l_ly polarized
1light, there is no direction in vhich the diffusion mtensity equals zero; how-
ever, if the pr?rygzlon is perpendicula.r to the axes of an ellipse, a maximm
diffusion intensity will be observed in one case (if the observation is 'pc‘:pen-

dicular to the large axis), and a minjmum intensity in another.

The situation, however, becomes Purtuer complicated if ve bear in mind that
the scattering isotropic oscillator is in an anisotropic medium The fact that
this ténsion-produced nonhomogeneous anisotropy is not very great makes it pos-

sible not to distinguish between the normal and the ra&, and to assume that the

rays are rectilinear. On the contrary, the difference in-the scatte‘riﬁg spéed o

of two types of waves ru,nning in a given direction_ mst not'be diéregarded. For

NYIET £l U

this reason, the nature of the polartzation of the light diffused within a body .. -

L

e ,....W«.-.-..-mmuummam: A

will be different upon emerging from the body when ic the region of diffusion. = 'j'i:" 3
The radiation of an oscillator in an anisotropic medium has been previo*asly dis-:'
cussed by the author (ref. L),

An oscillator vibrating in the direction of e will radiste two waves vith}—

.
/

1

a different polarization iv the direction of ¥. If no distinction is made = »

. . ey
H




a‘mmwwuiwmwaw@
m_thcdirectionofk. Itrmmmmnmnmmum
,amonge,peurmmmmnyvmbeemtom,umm If the
x'f;ﬁ;rstimmbythesam oscillator is elliptical rather than linesr,
the aiffused 1ight emerging from the model vill be elliptically polarized even
12 the ‘cbservation is carried out along the axes of the ellipee. Only in some
faiticﬁlarcases,fomm-ple,uthephmofmmhummtheum‘um
-oftheobservatim&refaundinthenjortensionplm will the electric wec-
; utoroftbeout@mglidxtbeperpenucnlartothoincuﬂtpn-rymmﬂn

" body.. It 1s clear from the above that the most relishle and only universal
”'nethodofmmtmmumﬁxmepommmatheoocm:tmm [186
'linearalonsthepathot}:hem.

| If ke 7ay is directed aloug the major x axis (vhick can be achieved by
f_'mmw),mmammumymzmmmmm
unchanged (see belov), the diffusion between the points in vhich the polariza-

‘tiqnisumuequu(seew))

P S (1

Ny 26"}:',,‘) .
lme abeve-cited expressions apply to a hcwogeneous anisotropic medium. There-
fore, if the medium along the scattered ray changes its characteristics, the

intensity correlation of both outgoing components may, in some cases (see be-

. 1ow), not be the same as in the region of the diffusion.

10
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H And:tvithu.nenrpohruaticnatpomtxvﬂlahobenneaﬂypohrued
atxubututhadirmtdjnctionofoociuatim Catm-ely atadis-

' tqneaofd-a!' mtpodmwthemuMuotA-a, tbepo]mzstion ;
Of the 11ght 1s exactly the same. mmmmwmm-tom

mudmthedmctimoftheoscmaum'ﬂltherdmrauldarkspou
along the ray at distances of

Y
< e, —e) " (7°)
from which 1t 1s possible to find a - d;. In equaticn (7), C represents the
usual reletive optical stress factor; in refs. 2 and 5, a constant equalling
i/cusuuummformt-@im. The d distance is a minimal cne if o
umw«mmmmwgmm If the ray is not
..MmmmmhtberoIcofu and o hpmedbytheleemdary
major stresses in the plane perpendicular to the ray.

A change in the directions of the major stresses along the ray tends to
mmmutmm,umpom‘tdmbymmdlﬂmin(ref.j).
The rotation of the axes may reveal a unique situition In vhich aa approxima-
tion of gecmetrical optics is inspplicable, and vhich is also a matter of gen-
eral interest. Let us assume that the light is diffused along the major x axis.
All the other characteristics of the medimm along that axis, as well as in the
other directions, reveal wery insignificant changes at vavelength distances
(this condition is alvays realized). In such a case, as it appears at first
glatce, an spproximation of gecwetrical optics means Vat hoth types of wvaves
mtmmcumwmmwotmm,M'

2x

ﬂnchnnshgphncotud:ofthuonthcxpatbisegmltoA-T ndx,




givm vave. Indeed, snch a 'behavio:r of 'both iaves should alwayé i E

the:l.r pmpaga.tion does 1ot change. Such behavicm- 13 not observa’ble in the case .

h et i a

"'rotating axea. 'nxe rortation of the y and z axes is accoupanied by the rota- -

ti.on' of the pdl.ar‘ization d:lrections of both types of waves. Fere, a.ceord.ing to !
: , t-h; ;eanetr.lcd. optics approximtion, the electric ve‘tor of each of the waves ‘ :
| -, ‘should follow in the directica of the apprupriste major axis. This can be shown
quite accurately by the use of tbe gemaJ. method (ref. 3), but n 1s aiso im-
nedia.telyclw Indeed, vevillassumethattheEvectoratpointxlis di-

rgcted along the y axis, i.e., that there is cnly one type of wave (in the sec-

ond wave the electric vector is directed aloug the 2 axis); a geometrical optics /187
,._’sppronntimshovsthatonetypeofmeismtwnnecbedvithanothertype |
| (of a diﬁ'emt pohrization) Only one vave with an electric vector directed
againat the major y axis should therefore be observed also a? point x5; and

“the direction of the y axis at x5 1s no longer the same as at x. The direction

" of the oscillations 1s thus "tied” to the direction of the major axis. At the

same 1;1!2, if ‘the anisotropy is not very pronounced the characteris‘tics (veloci-
j'vties) of both types of waves dc not differ a great deal from one ané:ther, and a

_ degeneration occurs at the limit point during the onset of isotropy. In an iso-
tropic case, any directions may be selected as-y and z axes, and it is clear

that the rotation of these directions will not result in the rotation of the

plane of the light polarization. Thus in the case of an anisotropic medium, a
geometrical optics approximation is inapplicable not only in the presence of

large n grudients and the reduction of n to zero (see ref. 3), but also in the

gx‘treme case of a mild anisotropy; the inapplicability of geometrical optics

12




the angle of their rotation at x d.istance 1sl

s
§

Since the rotation of tﬁe axes is slow, the following condition is a.uto-;

matically realized

A1<1.

For example, even if the axes rotate on 2x at a distance of 0.1 cm, A=4
and A6 © 1073,
The purpose of using the geometrical optics to £ind the’ polariiation

changes along the ray is to see that

" where 8n is the difference between the refraction indexes of both types of -

‘waves (that is in the case under consideration: &n=ny - n,), and factor 2«

is introduced for convenience. Parameter R is obviously equal to

[see (6) and (8)].

?‘We adhere to the uesignations adopted in ref. 5.

—
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can be solved in general terms
'J!nis can be done by uslng the ord.ina.ry method of expanding the small param-

eter A (ref 3) by degrees, end taking into account the fact ‘that the off-

:d:lagonal components of the tensor of dielectric constants are considerably
smaller than the diagonal components. But we will not dwell here on such a
_Y Vconsidera.tion as the problem involving the case of rect 1inea.r propagation and _‘
7' "v_,:;;i‘l;e :_r_ele.f_;ion to photoelasticity, as well as certain ot.her a.dmissible assump- 7

v.j'_tiens, can be strictly and fully resolved. Such a method has, in effect, already

=\

" 'been’'used by Drucker and Mindlin (ref. 5). But it seems to us that their use

of designations of the theory of elasticity, and the desire to emphasize a oum-

" ber of dei;a:Lls and conclusions, make a repeated brief review of this @estion

The equations of light diffusion with a wave normal directed along the x

axis in an anisotropic medium, whose properties change only along the x axis,

have the following form (ref. 3)

! :
L } L

/188




vhere Egi, Byt D, and D are the components of the B and B véctoi-s on the j'A
and z' axes which are perpendicular to the x axis, have the same direction every-
where and, consequently, thelr direction does not coincide with that of the i -
major y and z axes; v/c = 2n/x, that is w is the angular freqpency (the 1ight is‘
assumed to be monochromatic).

The B vector is expressed linearly Phrough E, and in the y and z system of

coordinates:

D, =(a42)E
--(..+;.)E, } ) Ll

Sl At e x

If at a given point of the axis, y and z form an angle g(x) vith the y'emd T

Z' axes, then

and, similarly, for the following connection
- I3

Dy end D, with Dy, and 5.

Accepting correlation (8) and changing the E,., E,vs Dy

‘D, and D, functions=
in (12) to E,
alrealy been used]

, etc., we obtain, as can easily be proved [equations (13) pave

15
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" “Phe condition of the existence of a nontrivial solution of Ehat system provides
.. &n equation to define k

: - ek

(2=.,+a= +3‘)+’/!A’}v s

S 16+§' I“"ﬁ“"fbf‘?i‘

'B:e solution of equation (17) can be e“betantia.uy simplified because of
the existence of conditions (3) and (9) s which are always fulfi.!_Lea, and aiso -
because the Se and A\ magnitudes mig’nt be of the same oxder but a priori

L ge> (A\)2. Thus we obtain, correct to a high order of an infinitesinal, (that

18) disregarding (AA.)2 as compared to 8¢} for example

1

H1e St it b K thenys, =V XY AE VS

]
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F‘ Further, in view of the smallness of b and 6«{1{1 ,we get the final ex—]

pression ’ : ' R

where

Thus the waves propagating in the medium in the direction of’the x axis
! are of two types, proportional . to e'i("t Jex) with various k(k k:l-) values and

\ various types of osci_lla.tions. If the axes do not rotate, then

k+—t—(n.+an,) ¢ A_--(u.+aa,>

,A', e ._.—_.,V.__“

and the wave with E.y;éo and E, =0 corresponds to“the solution of k , and the

wave with E, #0 and E, =0 to the solution of k_, as it should be. In the event

of rotation, the k values are defined by solving (19), and the connection be-

tween E, and E, in both types of waves can be found by the use of equation (16). -

The phase difference betyeen both waves in the system of y and z axes amounts to S

(20)

If condition (10) is observed, this expression changes to (6), that is, the

phase difference in the system of y and z axes is the same as in the absence of

rotation. In this case there is a full "increase” of the field by rotating axes. ___

The resulting oscillation is linearly polarized at distances equal to (7). The

directions of the oscillations in this case vary not only at these distances @

Lbm: also at a distance equal to (7'). This is due to the simultaneous rotation!




If the R parameter is not smaJ_l, that is it ca.nnot be disrega.rded, the

2 'normal osc:Lllations in the y and z system corresponding to the k a.nd k vave

. vectpr are no longer linearly polarized. Namely, as 1ndicated in (15),

wheretheuppersymbola:ppliestothevavewithk k*, andthelower;ok k._"’

The normal osc:llla.tions are thus elliptically pola.rized The phase difference
between T’them is defined by correlation (20). The propagation of a wave with any

pola.rization can be ascertained 'by wa.y of expanding these oscilla.tions into

norml ones. It is obvious that the behavior of bath waves from the viewpoint

of a fix:ed Bystem of y' and z' ooord.ina.tes is of greater immediate interest. In

that Bygtem

lye should point out that the solution applies direetly only to a case of even

axes rotation; if the rotation is uneven, this solution ca.u be used only in




1 . .

; I;.;d'thus—in the waves of each type (which differ by the selection of aradicai_] ’

" sign) we get, co. rect to an arbitrary amplitude

.

If, for example, 6n'] =ny, =0, then :(af’! jm‘)_.Vl’-*—R:: 2‘

A

JRPRR peomee ey LT a8 2

The normal oscillations in this case, as may be seen immediately from (21), bhave - ,‘ .

a circular pola:riza.tionl; at the same time, the rotatidn of the axes cannot

1 complete expression of Ey,z would easily reveal that normal oscillations sare

distinguished by the sign of angular rotation (see, for example (22) assuming

_J

Lthat Gny = 8n, = 0). ,




come apparent in the solution in the absence of anisotropy, and it is ficti—l
ious’ in: nature, as it follow from. (2h) N )

I ‘there 1s no axis rotation (that is A = o), solution (22) cannot be used,
“ag"the. division into ‘A has been used above and the a.lready obvious result can 'be
obtained at once from (16).

It 1s clear from (23) that phase-x relationship of each of the osci_._lations,
qswe].l as lthe' phase difference-x relationship, is fairly complicated. That is
- ;rhythe *changes*in the ‘intensity-x relationship, occurring dnring the observa-
ultion of lig‘nt diffused in any direction that ve can assume to be a z' axis, are

not governed by & simple law, mat result is quite understandable.

if \the resulting oec,llation at any point is 1inear1y polarized, then, as it

oilows_from ( 20), the oseillation will again become linearly polarized for the

first time at a distance of

and at a distance of 24" its polarization in relation to the y a.nd z axes will
?be the same. as at the initial point, generally Ey (x+2d") = Ey’z (x).
\ "From the point of view of t.he y and 2' axes, however, the oscillations at
points x and x+2d" differ in’ their d.irection as a result of the a.x:Ls rotation
ha.t has occurred In this section, the picture observable in the fixed axes is
therefore rore complicated. As ‘has already been pointed out, the points with a
txlinee.r polarization can and sbould be fixed when the diffusion method is used,
“ and a” determined. Unlike the case when there 1s no axis rotation, the direc-
tions in which the intensity of the diffused light is equal to zero are no
. longer found in the same plane which is perpendicular to the ray. The bands

LreveaJ.ed by an observation in such a plane will not be sharply outlined but e

—20
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- ";:mewhat irregular and unclear [see (23)]. In addition to that indication, the] -
‘rotation will manifes‘!."itéelf primarily in the fact that the-distanceé‘. beiween -

- the bands and the entire picture do not depend en 6y -6, but are governed by - -

T aopgt 0 o - nonst - : e L T ER
the law of T—— o, as R=g—gqo - Therefore, if the material is subordinated
y z : R 4 z ) . ’

- to ~Irrelations (1), while a change in the load fails to implement condition (7),
the axes will rotate (barring, of course, any indeterminate complications). The
rotation of the axes will undoubtedly complicate the analysis of a thi-ee-dimen- :
sional state of tension by the photoelastic me}thod an attempt should “therefore
be made to keep the effect of the rotation down to a minimum - With the rotation
speed fived at A, the only method in this case 1s an increase in the load that

_would lead to an increase of ény ~ 6n, and a reduction_cf R.. Inasmuch as R is
inclnded in the basic e;rpressions ;)f the'm;mbination, all we need do is
see that R 1s <~0.3, avd the cff2ot of the rotat:l:)ﬁ is thus practically entirely ‘,
eliminated.

A recapitulation of the abov: Jjustifies the conclusion that, despite < noum-

ber of cormplications (double ra) refrac’cion of diffused light, the rotation of
axes, etc. ) 3 the use of difﬁwed light for the solution of three dimensional
photoelastic problems is a hi/;hly promising mathod ‘whose appl:lcation does not

involve too many special reqfiziranents.

1in addition to the above-listed requirements, we should note here the eomplica- o
tions connected with'the desirability of changing the direc¢tion of the primry )
light rays in the body; to avoid refraction on “the boundaries, the body should

be placed in a liquid with a refraction index of n, = 0,;

o3 in all probability,

. it would be more convenient ‘.0 use materials vhose n, value is as close to a
{ - ,
Lmit as possible. : i
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